太阳能电池发电原理在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。 太阳能是人类取之不尽用之不竭的可再生能源。也是清洁能源,不产生任何的环境污染。
制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:
当硅晶体中掺入其他的杂质,如硼、磷等,当掺入硼时,硅晶体中就会存在着一个空穴,它的形成可以参照下图:
图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边的四个电子。而的表示掺入的硼原子,因为硼原子周围只有3个电子,所以就会产生入图所示的蓝色的空穴,这个空穴因为没有电子而变得很不稳定,容易吸收电子而中和,形成P(positive)型半导体。同样,掺入磷原子以后,因为磷原子有五个电子,所以就会有一个电子变得非常活跃,形成N(negative)型半导体。的为磷原子核,红色的为多余的电子。如下图。
N型半导体中含有较多的空穴,而P型半导体中含有较多的电子,这样,当P型和N型半导体结合在一起时,就会在接触面形成电势差,这就是PN结。
当P型和N型半导体结合在一起时,在两种半导体的交界面区域里会形成一个特殊的薄层),界面的P型一侧带负电,N型一侧带正电。这是由于P型半导体多空穴,N型半导体多自由电子,出现了浓度差。N区的电子会扩散到P区,P区的空穴会扩散到N区,一旦扩散就形成了一个由N指向P的“内电场”,从而阻止扩散进行。达到平衡后,就形成了这样一个特殊的薄层形成电势差,这就是PN结。
当晶片受光后,PN结中,N型半导体的空穴往P型区移动,而P型区中的电子往N型区移动,从而形成从N型区到P型区的电流。然后在PN结中形成电势差,这就形成了电源。(如下图所示)
由于半导体不是电的良导体,电子在通过p-n结后如果在半导体中流动,电阻非常大,损耗也就非常大。但如果在上层全部涂上金属,阳光就不能通过,电流就不能产生,因此一般用金属网格覆盖p-n结(如图 梳状电极),以增加入射光的面积。
另外硅表面非常光亮,会反射掉大量的太阳光,不能被电池利用。为此,科学家们给它涂上了一层反射系数非常小的保护膜(如图),将反射损失减小到5%甚至更小。一个电池所能提供的电流和电压毕竟有限,于是人们又将很多电池(通常是36个)并联或串联起来使用,形成太阳能光电板。
通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。
上述方法实际消耗的硅材料更多。为了节省材料,目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等离子增强化学气相沉积(PECVD)工艺。此外,液相外延法(LPPE)和溅射沉积法也可用来制备多晶硅薄膜电池。
化学气相沉积主要是以SiH2Cl2、SiHCl3、SiCl4或SiH4,为反应气体,在一定的保护气氛下反应生成硅原子并沉积在加热的衬底上,衬底材料一般选用Si、SiO2、Si3N4等。但研究发现,在非硅衬底上很难形成较大的晶粒,并且容易在晶粒间形成空隙。解决这一问题办法是先用 LPCVD在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜,因此,再结晶技术无疑是很重要的一个环节,目前采用的技术主要有固相结晶法和中区熔再结晶法。多晶硅薄膜电池除采用了再结晶工艺外,另外采用了几乎所有制备单晶硅太阳能电池的技术,这样制得的太阳能电池转换效率明显提高。
在太阳能电池中硅系太阳能电池无疑是发展最成熟的,但由于成本居高不下,远不能满足大规模推广应用的要求。为此,人们一直不断在工艺、新材料、电池薄膜化等方面进行探索,而这当中新近发展的纳米TiO2晶体化学能太阳能电池受到国内外科学家的重视。
以染料敏化纳米晶体太阳能电池(DSSCs)为例,这种电池主要包括镀有透明导电膜的玻璃基底,染料敏化的半导体材料、对电极以及电解质等几部分。
如图所示,白色小球表示TiO 2,红色小球表示染料分子。染料分子吸收太阳光能跃迁到激发态,激发态不稳定,电子快速注入到紧邻的TiO 2导带,染料中失去的电子则很快从电解质中得到补偿,进入TiO 2导带中的电于最终进入导电膜,然后通过外回路产生光电流。
纳米晶TiO 2太阳能电池的优点在于它廉价的成本和简单的工艺及稳定的性能。其光电效率稳定在10%以上,制作成本仅为硅太阳电池的1/5~1/10.寿命能达到 20年以上。但由于此类电池的研究和开发刚刚起步,估计不久的将来会逐步走上市场。
声明:本文内容及配图由入驻作者撰写或者入驻合作网站授权转载。文章观点仅代表作者本人,不代表电子发烧友网立场。文章及其配图仅供工程师学习之用,如有内容侵权或者其他违规问题,请联系本站处理。举报投诉
板控制就是其中最典型的一例。介绍了美国DALLAS公司推出的低功耗时钟芯片DS1307的结构和工作原理及其在
(组)组成。如输出电源为交流220V或110V并且要和市电互补,还需要配置逆变器和市电智能切换器。1
的容量也是众说纷纭,但从家庭1天的用电量为十几kWh左右来看,其容量至少需要数kWh。为了大幅
一般由p-n结组成,p-n结中的光能(光子)通过导致电子和空穴的重新组合而产生电流。由于p-n结的特性类似于二极管的特性,我们一般以如下图中所示的电路作为光伏
滴胶板在产品上使用尺寸是怎么计算的,比如我有一电路,驱动一颗LED,我给他分配20MA的电流,选用1.2V300MA的
的原理主要是半导体的光电效应,一般的半导体主要结构如下: 图中,正电荷表示硅原子,负电荷表示围绕在硅原子旁边
板为自己的手机解决充电问题。心动了就想行动,到处查找资料,网上资料说1.手机有电源管理芯片(外围电路不用进行恒压,横流等电路,电路就能简化好多)2.手机锂
造价高,导致研究成本很高,不利于其初期的研究。因此,很有必要设计一种成本较低,能够代替实际光伏
模拟器以BUCK电路为基础,采用ARM控制,并加入了电流PI控制方式来改善系统动态性能和稳态精度。此外,本文还采用四折线法来对光伏
百万美元的损失。该大学的目标是使无人机在未来两年内可获得商业化。飞船重8.8磅的无负载和可以用手展开,由二十八单晶硅
本帖最后由 gk320830 于 2015-3-5 18:34 编辑 目前有的材料是。6v1.2w
的光电半导体薄片。它只要被满足一定照度条件的光照到,瞬间就可输出电压及在有回路的情况下产生电流。在物理学上称为
。当然,该预测并不是空穴来风,最近的一些新研究成果业也增强了说服力。阿尔托大学研究者已研发出新型黑硅
片的电压是0.55V,工作电压为3.3v功率为3.3w尺寸:145*145*25mm这款3.3Wsunpower高效
片的电压是0.55V,工作电压为5.5v功率为5.5w尺寸:260*158*25mm这款ETFE
所有的物质均有原子组成,原子由原子核和围绕原子核旋转的电子组成.半导体材料在正常状态下,原子核和电子紧密结合(处于非导体状态),但在某种外界因素的刺激下,原子核和
,不排放二氧化碳,而是加热和电解石灰石,制成石灰、氧气、碳或者一氧化碳。大型菲涅尔透镜聚焦
26 日报导,夏普(Sharp)和宇宙航空研究开发机构(JAXA)已研发出可使用于人造卫星等航太用途的轻薄、可弯曲式
总所周知,能源是人类社会存在和发展的重要物质基础。然而,随着社会的发展,煤炭、石油等传统不可再生的资源日益减少,开发清洁的能源迫在眉睫。
是一对光有响应并能将光能转换成电力的器件。能产生光伏效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓星空体育全站app,硒铟铜等。它们的
,相当于整个世界一年消耗的总能量。世界沙漠 4%的面积或中蒙边境戈壁滩面积的一半(约65万平方公里)铺上
系统具有抗台风、抗冰雹、抗潮湿、抗紫外辐照等特点,组件系统可以在零下40度到零上70度环境下正常工作; 无需
比较具有许多优点,如安全可靠、无噪声、无污染,能量随处可得、不受地域限制、无需消耗燃料、无机械转动部件、故障率低、维护
比较具有许多优点,如安全可靠、无噪声、无污染,能量随处可得、不受地域限制、无需消耗燃料、无机械转动部件、故障率低、维护简便、可以无人值守、建站周期短、规模大小随意
的原理主要是半导体的光电效应。能产生光电效应的材料有许多种,如:单晶硅,多晶硅,非晶硅,砷化镓,硒铟铜等。它们的
近期,美国能源部橡树岭国家实验室(Oak Ridge National Laboratory)和田纳西大学诺克斯维尔分校研究发现了一种颇具前景的
光生伏打效应就是当物体受到光照时,其体内的电荷分布状态发生变化而产生电动势和电流的一种效应。半导体
若有遮挡物挡住部分光线,就会产生阴影,阴影部分产生的电流会比正常光照下的电流要小很多,会降低